فیزیک لیزر
واژه لیزر (Laser) مخفف عبارت «Light Amplification by Stimulated Emission of Radiation» به معنی «تقویت نور به روش گسیل القایی تابش» است.
لیزر ابزاری است که نور را به صورت پرتوهای موازی بسیار باریکی که طول موج مشخصی دارند ساطع میکنند. این دستگاه از مادهای جمعکننده یا فعال کنده نور تشکیل شده که درون محفظه تشدید نور قرار دارد. این ماده پرتو نور را که به وسیله یک منبع انرژی بیرونی (از نوع الکتریسیته یا نور) به وجود آمده، تقویت میکند.
نخستین بار طرح اولیه لیزر (میزر) را انیشتن داد. کار لیزر به این گونهاست که با تابش یک فوتون به یک ذره (اتم یا مولکول یا یون) برانگیخته، یک فوتون دیگر نیز آزاد میشود که این دو فوتون با هم، هم فرکانس هستند. با ادامه این روند شمار فوتونها افزایش مییابد که میتوانند باریکهای از فوتونها را به وجود بیاورند.
لیزر از نظر ماهیت هیچ تفاوتی با نور عادی ندارد و خواص فیزیکی لیزر، آن را از نورهای ایجاد شده از دیگر منابع متمایز میسازد. از نخستین روزهای تکنولوژی لیزر، به خواص ویژه آن پی برده شد که خود این خواص بستری عظیم برای کاربردهای وسیع این پدیده در علوم گوناگون به ویژه صنعت و پزشکی ایجاد کردهاست. پیشرفت دانش بدون تکنولوژی لیزر امکانپذیر نیست.
شاید مهمترین بخش فیزیک اتمی، بحث فیزیک لیزر باشد. با دادن انرژی به الکترونهای یک اتم میتوان آنها را به مدارهای بالاتر برد. اما این خانه جدید برای الکترونها جایگاه چندان پایداری نیست و الکترونها ترجیح میدهند با پس دادن انرژی به مدار اصلی خود برگردند. این انرژی به صورت یک فوتون با فرکانس مشخص آزاد میشود. یعنی یک واحد انرژی. نور از همین فوتونها ساخته میشود. پس اگر با تعداد زیادی از اتمها همزمان این کار را انجام دهیم، میتوانیم پرتو نوری تک فرکانس ایجاد کنیم. علاوه بر اینکه با روشها و دقتهایی میتوان پرتوهای هم فاز تولید کرد. این پدیده اساس تولید پرتوهای لیزر است. ویژگیهای منحصربفرد لیزر آن را از نورهای دیگر متمایز میسازد که در هیچ منبع نور دیگری یافت نمیشود. لیزر چهار ویژگی دارد:
1. همدوسی 2 . تک رنگی 3. واگرایی کم 4. موازی بودن پرتو
فهرست مطالب:• ۱ تاریخچه 2- سیر تحول و رشد 3 - عناصر اساسی لیزر ۳.۱ دمنده۳.۲ محیط لیزری ۴ -خروجی لیزر
5 - کاربردهای لیزر• ۶- آخرین فناوریها•۷- انواع لیزر۷.۱ لیزر حالت جامد۷.۲ لیزر گازی۷.۳ لیزر مایع ۷.۴ لیزر نیم رسانا ۷.۵ لیزر شیمیایی ۷.۶-لیزر کیلیتی۸ - منابع
تاریخچه
پیشنهاد استفاده از گسیل القایی از یک سامانه با جمعیت وارون برای تقویت امواج میکروویو بطور مستقل را وبر، جوردون، زیگر، باسو، تانز و پروخورو دادند. نخستین استفاده عملی از چنین تقویت کنندههایی توسط گروه جوردون، زیگر و تاونز در دانشگاه کالیفرنیا انجام شد. این گروه نام میزر را که سرواژهٔ عبارت «Microwave Amplification by Stimulated Emission of Radiation» است، برای آن برگزیدند.
مبانی نظری لیزر را آلبرت انیشتین در ۱۹۱۶ (میلادی) طی مقالهای مطرح کرد ولی سالهای نسبتاً زیادی طول کشید تا صنعت و فناوری امکان ساخت نخستین لیزر را فراهم کند. چارلز تاونز در سال ۱۹۵۳ میزر (تقویتکننده موج میکروویو) را اختراع کرد و خواست آزمایشهای خود را حول جایگزینی نور مرئی به جای فروسرخ ادامه دهد و همزمان این امر میان آزمایشگاههای گوناگون در سراسر جهان به عنوان رقابتی جدی در نظر گرفته شد. نخستین میزر با استفاده از گذار میکروویو در مولکولهای آمونیاک ساخته شد. در سال ۱۹۵۸ نخستین بار پیشنهاد فعالیت میزر در فرکانسهای نوری در مقالهای توسط اسکاولو و تاونز داده شد. عبارت لیزر در همان زمان در مقالهای از «گوردون هولد»، دانشجوی دکترای دانشگاه کلمبیا، پیشنهاد شد و تئودور میمن (Theodore H. Maiman) لیزر پالسی یاقوت را در ۱۹۶۰ ساخت. نخستین لیزر گازی را نیز علی جوان فیزیکدان ایرانی در سال ۱۹۶۱ با استفاده از هلیوم و نئون ساخت. در سال ۱۹۶۲ نیز پیشنهاد لیزرهای نیمههادی مطرح گردید. نور لیزر را تکفام پرتو نیز مینامند.
از سال ۱۹۶۶ لیزر نیمرسانا در مخابرات نوری در ژاپن و آمریکا مورد توجه قرار گرفت و نسبت به امکان مد گردانی مستقیم آن تا فرکانسهای بسیار زیاد شناخت حاصل شدهاست.
سیر تحول و رشد
با پیشرفت روزافزون مکانیک کوانتومی و جنبههای ذرهای نور و تولید آینههایی با توان بالا دانشمندان لیزرهایی را با توان خروجی بهتر (لیزرهای توان بالا) و همدوسی بالاتر ساخته شدند.
اختراع لیزر به سال ۱۹۵۸ با نشر مقالات علمی در رابطه با میزر پرتو فروسرخ و نوری برمیگردد. نشر مقالات یاد شده سبب افزایش تحقیقات علمی توسط دانشمندان در سراسر جهان گردید. در بخش ارتباطات نیز کارشناسان توانایی لیزر را که جایگزین ارسال یا مخابره الکتریکی شود، تأیید نمودند. اما اینکه چگونه پالسها را مخابره نمایند، مشکلات زیادی را بوجود آورد. در سال ۱۹۶۰ دانشمندان پالس نور را مخابره نمودند، سپس از لیزر استفاده کردند. لیزر نور زیادی را تولید کرد که بیش از میلیونها بار روشن تر از نور خورشید بود. پرتو لیزر میتواند خیلی تحت تأثیر شرایط جوی مانند بارندگی، مه، ابرهای کم ارتفاع، چیزهای موجود در آزمایشهای مربوط به هوا مانند پرندگان قرار گیرد.
دانشمندان نیز طرحهای نویی را جهت حمایت نور از برخورد با موانع را پیشنهاد نمودند. قبل از اینکه لیزر بتواند سیگنالهای تلفن را ارسال کند. اختراع مهم دیگر موجبر فیبر نوری بود که شرکتهای مخابراتی برای ارسال صدا، اطلاعات و تصویر از آن استفاده میکنند. امروزه ارتباطات الکترونیکی بر پایه فوتونها استوار میباشد. تکنولوژی تسهیم طول موج یا رنگهای گوناگون نوری برای ارسال تریلیون بیت فیبر نوری استفاده میکند.
عناصر اساسی لیزر
ابزار لیزر یک نوسانگر اپتیکی است که باریکهی بسیار موازی شدهی شدیدی از تابش همدوس را گسیل میکند و از سه بخش ساخته شدهاست:
1. چشمهی انرژی خارجی یا دمنده
2. محیط تقویت کننده
3. کاواک اپتیکی یا تشدیدگر
دمنده :
دمنده یک چشمهٔ انرژی خارجی است که وارونی جمعیت را در محیط لیزری به وجود میآورد. تقویت موج نور یا میدان تابش فوتون تنها در یک محیط لیزری که در آن وارونی جمعیت بین دو تراز انرژی وجود داشته باشد روی میدهد. برای اینکه لیزر کار کند لازم است تعداد اتمهای در تراز انرژی از تعداد اتمهای در تراز انرژی بزرگتر باشد. این وضعیت را وارونی جمعیت مینامند. وارونی جمعیت و گسیل القائی با هم در محیط لیزری کار میکنند و باعث تقویت نور میشوند. در غیر این وضعیت موج نور عبور کننده از محیط لیزری تضعیف خواهد شد.
دمندهها میتوانند از نوع اپتیکی، الکتریکی، شیمیایی یا گرمایی باشند به شرط این که انرژی لازمی را فراهم کنند که بتواند با محیط لیزری برای برانگیختن اتمها و ایجاد وارونی جمعیت لازم همراه شود.
در لیزرهای گازی مانند He-Ne، دمندهای که از همه بیشتر به کار میرود از نوع تخلیهٔ الکتریکی است. عوامل مهم حاکم بر این نوع دمش مقطعهای برانگیزش الکترونی و طول عمرهای ترازهای انرژی مختلف هستند. در بعضی از لیزرهای گازی، الکترونهای آزادی که در فرایند تخلیه تولید شدهاند با اتمها، یونها یا مولکولهای لیزر مستقیما برخورد و آنها را برانگیخته میکنند. در سایر لیزرها، برانگیزش توسط برخوردهای ناکشسان اتم-اتم یا مولکول-مولکول روی میدهد.
در لیزر Nd:YAG از دمش اپتیکی استفاده میکنند.
محیط لیزری
محیط تقویت کننده یا محیط لیزری بخش مهمی از ابزار لیزر است که منبع ساطع کننده نور میباشد و میتواند گاز، مایع یا جامد باشد و طول موج تابش لیزری را تعیین میکند. بسیاری از لیزرها از روی نوع محیط لیزری به کار رفته در آنها نامگذاری میشوند، برای نمونه هلیم-نئون (He-Ne)، دی اکسیدکربن و نئودیمیم: نارسنگ ایتریم آلومینیم (Nd:YAG).
خروجی لیزر
خروجی لیزرها به دو صورت پالسی و پیوسته میباشد. پالس در واقع نوری است که در محدوده زمانی کوتاه تابیده میشود. این محدوده زمانی امروزه به کمتر از فمتوثانیه رسیده است.
کاربردهای لیزر
گروهی از ستارهشناسان با استفاده از یک تلسکوپ قدرتمند لیزری کهکشان راهشیری را مشاهده میکنند.
• فیزیک و شیمی
• زیستشناسی و پزشکی: چاقوی لیزری، مته لیزری، فیزیوتراپی و ...
• صنایع نظامی: ردیاب لیزری، تفنگ لیزری، بمب با هدایت لیزری و ...
• صنعت: جوشکاری لیزری، برشهای لیزری، برش الماس، مسافت یاب لیزری، صنایع ساختمانی
• همجوشی هستهای
• ارتباطات نوری
• ساخت ترانزیستورو مدار مجتمع
• لیتوگرافی و استریولیتوگرافی
• فرآوری اطلاعات نوری و ضبط آنها
• فرآوری مواد
• تمام نگاری (هولوگرافی)
• اندازهگیری (سرعت سنجی)
• بازرسی
• آزمایشگاهی و پژوهشی: اندازهگیری، سنتز مواد و ...
• لایه نشانی به روش لیزر پالسی
پس از اینکه لیزر دیاکسید کربن در سال ۱۹۶۴ اختراع شد کاربرد لیزر به واسطه دقت بالا و خطای ناچیز آن در زمینههای پزشکی افزایش یافت و برای جراحان ممکن شد تا بجای چاقوهای جراحی از فوتون استفاده کنند. امروزه لیزر میتواند وارد بدن شود و اعمال جراحی را نیز انجام دهد.
دیسکهای تصویری و صوتی و لوحهای فشرده یک دیسک ویدئو حامل یک برنامه ویدئویی ضبط شده است که میتوان آن را بر روی دستگاه تلویزیون معمولی نمایش داد. سازندگان دیسک ویدئویی اطلاعات را با استفاده از یک سابنده روی آن ضبط میکنند که این اطلاعات به وسیله لیزر خوانده میشود. یک روش معمول ضبط شامل برشهای شیاری با طولها و فاصلههای مختلف است عمق این شیارها 4/1 طول موج لیزری است که از آن در فرایند خواندن استفاده میشود. در موقع خواندن باریکه لیزر طوری کانونی میشود که فقط بر روی یک شیار بیفتد. هنگامی که شیار در مسیر لکه باریکه لیزر واقغ شود بازتاب به خاطر تداخل ویرانگر بین نور بازتابیده از دیوارهای شیار و به آن کاهش پیدا میکند. به عکس نبودن شیار باعث یک بازتاب قوی میشود. بدین طریق میتوان اطلاعات تلویزیونی را به صورت رقمی ضبط کرد.
در ژانویه ۲۰۱۳ فیزیکدانان ذرات یک گاز کوانتومی بر پایه پتاسیم ساختند. این گاز هنگامی که تحت تأثیر لیزر و میدان مغناطیسی قرار میگیرد به دماهای منفی میرسد. در این دمای ترمودینامیکی، ماده شروع به بروز دادن خواص ناشناخته پیشین میکند.[۱][۲]
آخرین فناوریها
شرکت نظامی راین متال آلمان با موفقیت یک لیزر پر قدرت نظامی را طراحی و تولید کرد. این لیزر میتواند هواپیماهای پهپاد را در میانه پروازشان تخریب کند. این نوع لیزر تخریبی از فاصله یک مایلی (۱۶۰۰ متر) قادر است بدنه فولادی پهباد را شکافته و به داخل هواپیما نفوذ کند. این ویژگی تخریبی حتی در آب و هوای نامساعد هم دچار اختلال نمیگردد. این شرکت قصد دارد با گسترش تحقیقات خود کارایی این لیزر را در جهت تخریب دیگر وسایل نقلیه نظامی در میادین جنگی افزایش دهد.[۳][۴]
انواع لیزر
فهرست انواع لیزر
لیزر حالت جامد
در این نوع لیزر، ماده فعال ایجاد کننده لیزر، یک یون فلزی است که با غلظت کم در شبکه یک بلور یا درون شیشه، به صورت ناخالصی قرار داده شده است. فلزاتی که برای این منظور بکار میروند عبارتند از:
اولین سری فلزات واسطه لانتانیدها آکتنیدها
ازمهمترین لیزرهای حالت جامد میتوان از لیزر یاقوت که یک لیزر سه ترازی است و لیزرهای نئودنیوم (Nd:glass , Nd:YAG) میتوان نام برد.
لیزر گازی
ماده فعال در این سیستمها یک گاز است که به صورت خالص یا همراه با گازهای دیگر مورد استفاده قرار میگیرند. بعضی از این مواد عبارتنداز: نئون به همراه هلیوم (لیزر هلیم_نئون)، دی اکسید کربن به همراه نیتروژن و هلیوم، آرگون، کریپتون، هگزا فلورئید و ... .
لیزر مایع
از مایعات بکار رفته در این نوع لیزرها اغلب به منظور تغییر طول موج یک لیزر دیگر استفاده میشود. (اثر رامان). بعضی از این مواد عبارتند از: تولوئن، بنزن و نیتروبنزن. گاهی محیط فعال برخی از این لیزرها را محلولهای برخی ترکیبات آلی رنگین از قبیل مایعاتی نظیر اتانول، متانول یا آب تشکیل میدهد. این رنگها اغلب جز رنگهای پلیمتین یا رنگهای اگزانتین و یا رنگهای کومارین هستند.
لیزر نیم رسانا
این نوع لیزرها به لیزر دیود و یا لیزر تزریقی نیز معروفند. نیم رساناها از دو ماده که یکی کمبود الکترون داشته، (نیم رسانای نوع p) و دیگری الکترون اضافی دارد، (نیم رسانای نوع n) تشکیل شدهاند. وقتی این دو به یکدیگر متصل میشوند، در محل اتصال ناحیهای به نام منطقه اتصال p_n بوجود میآید. آن منطقه جایی است که عمل لیزر در آن رخ میدهد.
الکترونهای آزاد از ناحیه n و از طریق این منطقه به ناحیه p مهاجرت میکنند. الکترون هنگام ورود به منطقه اتصال، انرژی کسب میکند و هنگامی که میخواهد به ناحیه p وارد شود، این انرژی را به صورت فوتون از دست میدهد. اگر ناحیه p به قطب مثبت و ناحیه n به قطب منفی یک منبع الکتریکی وصل شود، الکترونها از ناحیه n به ناحیه p حرکت کرده و باعث میشوند تا در منطقه اتصال، غلظت زیادی از مواد فعال بوجود آید. با از دست دادن فوتون، تابش الکترومغناطیسی حاصل میگردد.
چنانچه دو انتهای منطقه اتصال را صیقل دهند، آنگاه یک کاواک لیزری بوجود خواهد آمد. اصولا این نوع لیزرها را طوری میسازند که با استفاده از ضریب شکست دو جز p و n، کار تشدید پرتو لیزر انجام شود. یکی از نقاط ضعف لیزرهای نیم رسانا همین است، زیرا با تغییر دما، میزان ضریب شکست و به دنبال آن خواص پرتو حاصله، تفاوت خواهد کرد. به همین دلیل لیزرهای دیودی نسبت به تغییرات دما بسیار حساس هستند.
در یک نوع از این لیزرها از بلور گالیم_آرسنید استفاده میشود که در آن تلوریم و روی به عنوان ناخالصی وارد میشوند. هنگامی که در بلور فوق بجای برخی از اتمهای آرسنیک، اتم تلوریم قرار داده شود، جسم حاصل نیم رسانایی از نوع n برده و وقتی که اتمهای روی مستقر میگردند، ماده بدست آمده از خود خاصیت نیم رسانای p را نشان خواهد داد.
لیزر شیمیایی
در این نوع لیزرها، تغییرات انرژی حاصل از یک واکنش شیمیایی باعث برانگیزش بعضی از فرآوردهها و در نتیجه وارونگی جمعیت میشود که به دنبال آن عمل لیزر اتفاق میافتد. تجزیه هالید نیتروزیل (NOX) و C2N2 توسط نور را میتوان به عنوان مثال ذکر نمود. در تجزیه هالید نیتروزیل NO و در تجزیه C2N2 ،CN برانگیخته میشود. X میتواند کلر یا برم باشد.
لیزر کیلیتی
به دلیل وجود تابشهای فلورسانس پرشدت حاصل از بعضی ترکیبات کیلیتی لانتانیدها، استفاده از این سیستمها چندان مورد توجه نبوده است. این ترکیبات ایجاد پرتو لیزر را ممکن ساخته است. یکی از مکانیسمهای پیشنهادی برای این فرایند آن است که ابتدا لیگاند برانگیخته شده و سپس یک جهش بدون تابش درون مولکولی به تراز برانگیخته فلز صورت گیرد و به دنبال آن یون فلزی با گسیل تابش فلورسانس به تراز پایه برمیگردد.
این تابش سرچشمه پرتو نور لیزر است. β - دیکتونها از جمله لیگاندهایی هستند که با لانتانیدها تولید ترکیبات کیلیتی مینمایند. در چنین سیستمهایی میتوان با استفاده از یونهای فلزی گوناگون، لیزرهای کنترل شده) بدست آورد. لکن نیاز به درجه حرارت پایین جهت تامین کارآیی خوب، از توجه و مطالعه در مورد این سیستمها کاسته است.
…….
کاربرد لیزر در فیزیک و شیمی
اختراع لیزر و تکامل آن وابسته به معلومات پایه ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده اند. بنابراین طبیعی است که استفاده از لیزر در فیزیک و شیمی از اولین کاربردهای لیزر باشند
رشته دیگری که در آن لیزر نه تنها امکانات موجود را افزایش داده بلکه مفاهیم کاملا جدیدی را عرضه کرده است طیف نمایی است. اکنون با بعضی از لیزرها می توان پهنای خط نوسانی را تا چند ده کیلوهرتز باریک کرد ( هم در ناحیه مرئی و هم در ناحیه فروسرخ ) و با این کار اندازه گیری های مربوط به طیف نمایی با توان تفکیک چند مرتبه بزرگی ( 3 تا 6) بالاتر از روش های معمولی طیف نمایی امکان پذیر می شوند. لیزر همچنین باعث ابداع رشته جدید طیف نمایی غیر خطی شد که در آن تفکیک طیف نمایی خیلی بالاتر از حدی است که معمولا با اثرهای پهن شدگی دوپلر اعمال می شود. این عمل منجر به بررسیهای دقیقتری از خصوصیات ماده شده است.
در زمینه شیمی از لیزر هم برای تشخیص و هم برای ایجاد تغییرات شیمیایی برگشت ناپذیر استفاده شده است. ( فوتو شیمی لیزری) به ویژه در فون تشخیص باید از روش های (پراکندگی تشدیدی رامان ) و ( پراکندگی پاد استوکس همدوس رامان ) (CARS) نام ببریم. به وسیله این روشها می توان اطلاعات قابل ملاحظه ای درباره خصوصیات مولکولهای چند اتمی به دست آورد ( یعنی فرکانس ارتعاشی فعال رامن - ثابتهای چرخشی و ناهماهنگ بودن فرکانس). روش CARS همچنین برای اندازه گیری غلظت و دمای یک نمونه مولکولی در یک ناحیه محدود از فضا به کار می رود. از این توانایی برای بررسی جزئیات فرایند احتراق شعله و پلاسما ( تخلیه الکتریکی) بهره برداری شده است.
شاید جالبتری کاربرد شیمیایی ( دست کم بالقوه ) لیزر در زیمنه فوتو شیمی باشد. اما باید در نظر داشته باشیم به خاطر بهای زیاد فوتونهای لیزری بهره برداری تجاری از فوتوشیمی لیزری تنها هنگامی موجه است که ارزش محصول نهایی خیلی زیاد باشد. یکی از این موارد جداسازی ایزوتوپها است.
کاربرد در زیست شناسی
از لیزر به طور روزافزونی در زیست شناسی و پزشکی استفاده می شود. اینجا هم لیزر می تواند ابزار تشخیص و یا وسیله برگشت ناپذیر مولکولهای زنده یک سلول و یا یک بافت باشد. ( زیست شناسی نوری و جراحی لیزری)
در زیست شناسی مهمترین کاربرد لیزر به عنوان یک وسیله تشخیصی است. ما در اینجا تکنیک های لیزری زیر را ذکر می کنیم :
الف) فلوئورسان القایی به وسیله تپهای فوق العاده کوتاه لیزر در DNA در ترکیب رنگی پیچیده DNA و در مواد رنگی موثر در فتوسنتز
ب) پراکندگی تشدیدی رامان به عنوان روشی برای مطالعه ملکولهای زنده مانند هموگلوبین و یا رودوپسین ( عامل اصلی در سازوکار بینایی)
ج) طیف نمایی همبستگی فوتونی برای بدست آوردن اطلاعاتی در مورد ساختار و درجه انبوهش انواع ملکولهای زنده
د) روشهای تجزیه فوتونی درخشی پیکوثانیه ای برای کاوش رفتار دینامیکی مولکولهای زنده در حالت برانگیخته
به ویژه باید از روشی موسوم به میکروفلوئورمتر جریان یاد کرد. در اینجا سلولهای پستانداران در حالت معلق مجبور می شوند که از یک اتاقک مخصوص جریان عبور کنند که در آنجا ردیف می شوند و سپس یکی یکی از باریکه کانونی شده لیزر یونی آرگون عبور می کنند. با قرار دادن یک آشکارساز نوری در جای مناسب می توان این کمیت ها را اندازه گیری کرد :
الف) نورماده ای رنگی که به یک جزء خاص تشکیل دهنده سلول یعنی DNA متصل ( که اطلاعاتی راجع بع مقدار آن جزء تشکیل دهنده سلول را به دست می دهد) امتیاز میکروفلوئورمتری جریان در این است که اندازه گیری ها را برای تعداد زیادی از سلولها در مدت زمان محدود میسر می سازد. به این وسیله می توانیم دقت خوبی برای اندازه گیری آماری داشته باشیم.
در زیست شناسی از لیزر برای ایجاد تغییر برگشت ناپذیر در ملکولهای زنده و یا اجزای تشکیل دهنده سلول هم استفاده می شود. به ویژه تکنیک های معروف به ریز - باریکه را ذکر می کنیم. در اینجا نور لیزر ( مثلا یک لیزر Ar+ تپی ) به وسیله یک عدسی شیئی میکروسکوپ مناسب در ناحیه ای از سلول با قطری در حدود طول موج لیزر (05 µm) کانونی می شود منظور اصلی از این تکنیک مطالعه رفتار سلول پس از آسیبی است که با لیزر در ناحیه خاصی از آن ایجاد شده است.
در زمینه پزشکی بیشترین کاربرد لیزرها در جراحی است ( جراحی لیزری) اما در بعضی موارد لیزر برای تشخیص نیز به کار می رود. ( استفاده بالینی از میکروفلوئورمتر جریان - سرعت سنجی دوپلری برای اندازه گیری سرعت خون - فلوئورسان لیزری - آندوسکوپی نای برای آشکارسازی تومورهای ریوی در مراحل اولیه
در جراحی از باریکه کانونی شده لیزر ( اغلب لیزر CO2 ) به جای چاقوی جراحی معمولی ( یا برقی ) استفاده می شود. باریکه فروسرخ لیزر CO2 به شدت به وسیله ملکولهای آب موجود در بافت جذب می شود و موجب تبخیر سریع این ملکولها و در نتیجه برش بافت می شود. برتریهای اصلی چاقوی لیزری را می توان به صورت زیر خلاصه کرد :
الف) دقت بسیار زیاد به ویژه هنگامی که باریکه با یک میکروسکوپ مناسب هدایت شود ( جراحی لیزر)
ب) امکان عمل در نواحی غیر قابل دسترس.. بنابراین عملا هر ناحیه از بدن را که با یک دستگاه نوری مناسب ( مثلا عدسی ها و آینه ها) قابل مشاهده باشد می توان به وسیله لیزر جراحی کرد.
ج) کاهش فوق العاده خونروی در اثر برش رگهای خونی به وسیله باریکه لیزر ( قطر رگی حدود 0/5 mm )
د) آسیب رسانی خیلی کم به بافتهای مجاور ( حدود چند میکرومتر) اما در مقابل این برتریها باید اشکالات زیر را هم در نظر داشت :
الف) هزینه زیاد و پیچیدگی دستگاه جراحی لیزری
ب) سرعت کمتر چاقوی لیزری
ج) مشکلات قابلیت اعتماد و ایمنی مربوط به چاقوی لیزری
با این اشاره اجمالی به جراحی لیزری اکنون می خواهیم به شرح مفصلتری از تعدادی از این کاربردها بپردازیم . در چشم بیماران مبتلا به مرض قند استفاده شده است در این مورد باریکه لیزر به وسیله عدسی چشم بر روی شبکیه کانونی می شود. پرتو سبز لیزر به شدت به وسیله گلبول های سرخ جذب می شود و اثر حرارتی حاصل باعث اتصال دوباره شبکیه یا انعقاد رگهای آن می شود. اکنون لیزر استفاده روزافزونی در گوش و حلق و بینی پیدا کرده است. استفاده از لیزر در این شاخه از جراحی جذابیت خاصی دارد. زیرا با اعضایی مانند نای - حلق و گوش میانی سروکار دارد که به علت عدم دسترسی به آن ها جراحی معمولی مشکل است. اغلب در این مورد لیزر همراه با یک میکروسکوپ استفاده می شود. همچنین لیزر برای جراحی داخل دهان نیز مفید است ( برای برداشتن غده های مخاطی ). امتیازات اصلی در اینجا جلوگیری از خونریزی و فقدان لختگی خون و درد پس از عمل جراحی و بهبود سریع بیمار است. لیزر همچنین اهمیت خود را در بهبود خونریزیهای سنگین در جهاز هاضمه ثابت کرده است. در این حالت باریکه لیزر ( معمولا لیزر نئودمیوم یا آرگون یونی ) به وسیله یک تار نوری مخصوص که در داخل یک آندوسکوپی داخلی قرار گرفته است پرتو لیزر را به ناحیه مورد معالجه هدایت می کند. لیزر همچنین در بیماری زنان مفید است درحالی که اغلب به همراه یک میکروسکوپ استفاده می شود. کاهش قابل ملاحظه درد و لخته شدن خون ارزش مجدد چاقوی لیزری را بیان می کند. در پوست درمانی اغلب از لیزر برای برداشتن خالها و معالجه امراض رگها استفاده می شود. بالاخره استفاده از لیزرها در جراحی عمومی و جراحی غده امیدوار کننده است.
ارتباط نوری
استفاده از باریکه لیزر برای ارتباط در جو به خاطر دو مزیت مهم اشتیاق زیادی برانگیخت :
الف) اولین علت دسترسی به پهنای نوار نوسانی بزرگ لیزر است. زیرا مقدار اطلاعات قابل انتقال روی یک موج حامل متناسب با پهنای نوار آن است. فرکانس موج حامل از ناحیه میکروموج بخ ناحیه نور مرئی به اندازه 104 برابر افزایش می یابد و در نتیجه امکان استفاده از یک پهنای بزرگتر را به ما می دهد.
ب) علت دوم طول موج کوتاه تابش است. چون طول موج لیزر نوعا حدود 410 مرتبه کوچکتر از امواج میکرو موج است با قطر روزنه یکسان D واگرایی امواج نوری به اندازه 410 مرتبه نسبت به واگرایی امواج میکرو موج کوچکتر است. بنابراین برای دستیابی به این واگرایی آنتن یک سیستم اپتیکی می تواند به مراتب کوچکتر باشد. اما این دو امتیاز مهم با این واقعیت خنثی می شوند که باریکه نوری تحت شرایط دید ضعیف در جو به شدت تضعیف می شود. در نتیجه استفاده از لیزرها در ارتباطات فضای باز ( هدایت نشده ) فقط در مورد این موارد توسعه یافته اند :
الف) ارتباطات فضایی بین دو ماهواره و یا بین یک ماهواره و یک ایستگاه زمینی که در یک شرایط جوی مطلوب قرار گرفته است. لیزرهایی که در این مورد استفاده می شوند عبارتند از :
Nd:YAG ) با آهنگ انتقال 910 بیت در ثانیه ) و یا CO2 با آهنگ انتقال 3* 810بیت در ثانیه ). گرچه CO2 نسبت به Nd: YAG دارای بازدهی بالاتری است و لی دارای این اشکال است که نیاز به سیستم آشکارسازی پیچیده تری دارد و طول موج آن هم به اندازه 10 مرتبه بزرگتر از طول موج Nd : YAG است.
ب) ارتباطات بین دو نقطه در یک مسافت کوتاه مثلا انتقال اطلاعات درون یک ساختمان. برای این منظور از لیزرهای نیمرسانا استفاده می شود.
اما زمینه اصلی مورد توجه در ارتباطات نوری مبتنی بر انتقال از طریق تارهای نوری است. انتقال هدایت شده نور در تارهای نوری پدیده ای است که از سالها پیش شناخته شده است اما تارهای نوری اولیه فقط در مسافت های خیلی کوتاه مورد استفاده قرار می گرفتند مثلا کاربرد متعارف آن ها در وسایل پزشکی برای اندوسکوپی است. بنابراین در اواخر سال 1960 تضعیف در بهترین شیشه های نوری در حدود 1000 دسی بل بر کیلومتر بود. از آن زمان پیشرفت تکنیکی شیشه و کوارتز باعث تغییر شگفت انگیز در این عدد شده است به طوری که این تضعیف برای کوارتز به 5/0 دسی بل بر کیلومتر رسیده است. این تضعیف فوق العاده کوچک آینده مهمی را برای کاربرد تارهای نوری در ارتباطات راه دور نوید می دهد سیستم ارتباطات تارهای نوری نوعا شامل یک چشمه نور یک جفت کننده نوری مناسب برای تزریق نور به تارها و درانتها یک فوتودیود است که باز هم به تار متصل شده است. تکرار کننده شامل یک گیرنده و یک گسیلنده جدید است. چشمه نور سیستم اغلب لیزرهای نیمرسانای نا هم پیوندی دوگانه است. اخیرا طول عمر این لیزرها تا حدود 6 10ساعت رسیده است. گرچه تا کنون اغلب از لیزر گالیم ارسنید GaAs استفاده شده است ولی روش بهتر استفاده از لیزرهای نا هم پیوندی است که در آنها لایه فعال ترکیبی از آلیاژ چهارگانه به صورت In1-x Gax Asy P1-y است. در این حالت لبه های P ,n پیوندگاه از ترکیب دوگانه InP تشکیل شده است و با استفاده از ترکیب y=2v2x می توان ترتیبی داد که چهار آلیاژ چهارگانه شبکه ای که با InP جور شود با انتخاب صحیح x طول موج تابش را طوری تنظیم کرد که در اطراف µm 3/1 و یا اطراف 6/1 µm واقع شود که به ترتیب مربوط به دو مینیموم جذب در تار کوارتز هستند. بسته به قطر d هسته مرکزی تار ممکن است از نوع تک مدباشد برای آهنگ انتقال متداول فعلی حدود 50 مگابیت در ثانیه معمولا از تارهای چند مدی استفاده می شود. برای آهنگ انتقال های بیشتر تارهای تک مدی مناسبتر به نظر می رسند. گیرنده معمولا یک فوتودیود بهمنی است اگر چه ممکن است از یک دیود PIN و یک دیود تقویت کننده حالت جامد مناسب نیز استفاده کرد.
اندازه گیری و بازرسی
خصوصیات جهتمندی درخشایی و تکفامی لیزر باعث کاربردهای مفید زیادی برای اندازه گیری و بازرسی در رشته مهندسی سازه و فرایندهای صنعتی کنترل ابزار ماشینی شده است. در این بخش تعیین فاصله بین دو نقطه و بررسی آلودگی را نیز مد نظر قرار می دهیم
یکی از معمولترین استفاده های صنعتی لیزر هم محور کردن است. برای اینکه یک خط مرجع مستقیم برای هم محور کردن ماشین آلات در ساخت هواپیما و نیز در مهندسی سازه برای ساخت بناها پلها و یا تونلها داشته باشیم استفاده از جهتمندی لیزر سودمند است. در این زمینه لیزر به خوبی جای وسایل نوری مانند کلیماتور و تلسکوپ را گرفته است. معمولا از یک لیزر هلیم - نئون با توان کم استفاده می شود و هم محور کردن عموما به کمک آشکارسازهای حالت جامد به شکل ربع دایره ای انجام می شود. محل برخورد باریکه لیزر روی گیرنده با مقدار جریان نوری روی هر ربع دایره معین می شود. در نتیجه هم محور شدن بستگی به یک اندازه گیری الکتریکی دارد و در نتیجه نیازی به قضاوت بصری آزمایشگر نیست. در عمل دقت ردیف شدن از حدود 5µm تا حدود 25µm به دست آمده است.
از لیزر برای اندازه گیری مسافت هم استفاده شده است. روش استفاده از لیزر بستگی به بزرگی طول مورد نظر دارد
برای مسافتهای کوتاه تا 50 متر روشهای تداخل سنجی به کار گرفته می شوند که در آن ها از یک لیزر هلیم - نئون پایدار شده فرکانسی به عنوان منبع نور استفاده می شود. برای مسافتهای متوسط تا حدود 1 کیلومتر روشهای تله متری شامل مدوله سازی دامنه به کار گرفته می شود. برای مسافت های طولانی تر می توان زمان در راه بودن تپ نوری را که از لیزر گسیل شده است و از جسمی بازتابیده می شود اندازه گیری کرد.
در اندازه گیری تداخل سنجی مسافت از تداخل سنج مایکلسون استفاده می شود. باریکه لیزر به وسیله یک تقسیم کننده نور به یک باریکه اندازه گیری و یک باریکه مرجع تقسیم می شود باریکه مرجع با یک آینه ثابت بازتابیده می شود در حالی که باریکه اندازه گیری از آینه ای که به جسم مورد اندازه گیری متصل شده است بازتاب پیدا می کند. سپس دو باریکه بازتابیده مجددا با یکدیگر ترکیب می شوند به طوری که با هم تداخل می کنند و دامنه ترکیبی آن ها با یک آشکار ساز اندازه گیری می شود. هنگامی که محل جسم در جهت باریکه به اندازه نصف طول موج لیزر تغییر کند سیگنال تداخل از یک ماکزیموم به یک مینیموم می رسد و سپس دوباره ماکزیموم می شود. بنابراین یک سیستم الکترونیکی شمارش فریزها می تواند اطلاعات مربوط به جابجایی جسم را به دست دهد. این روش اندازه گیری معمولا در کارگاههای ماشین تراش دقیق مورد استفاده قرار می گیرد و امکان اندازه گیری طول با دقت یک در میلیون را می دهد. باید یادآوری کرد که در این روش فقط می توان فاصله را نسبت به یک مبدا اندازه گیری کرد. برتری این روش در سرعت دقت و انطباق با سیستم های کنترل خودکار است.
برای فاصله های بزرگتر از روش تله متری مدوله سازی دامنه استفاده می شود و فاصله روی اختلاف فاز بین دو باریکه لیزر مدوله می شود و فاصله از روی اختلاف فار بین دو باریکه گسیل شده و بازتابیده معین می شود. باز هم دقت یک در میلیون است. از این روش در مساحی زمین و نقشه کشی استفاده می شود. برای فواصل طولانی تر از 1 کیلومتر فاصله با اندازه گیری زمان پرواز یک تپ کوتاه لیزری گسیل شده از لیزر یاقوت و یا لیزر CO2 انجام می گیرد. این کاربردها اغلب اهمیت نظامی دارند و در بخشی جداگانه بحث خواهد شد کاربردهای غیر نظامی مانند اندازه گیری فاصله بین ماه و زمین با دقتی حدود 20 سانتی متر و تعیین برد ماهواره ها هم قابل ذکر است.
درجه بالای تکفامی لیزر امکان استفاده از آن را برای اندازه گیری سرعت مایعات و جامدات به روش سرعت سنجی دوپلری فراهم می سازد. در مورد مایعات می توان باریکه لیزر را به مایع تابانده و سپس نور پراکنده شده از آن را بررسی کرد. چون مایع روان است فرکانس نور پراکنده شده به خاطر اثر دوپلر کمی با فرکانس نور فرودی تفاوت دارد. این تغییر فرکانس متناسب با سرعت مایع است. بنابراین با مشاهده سیگنال زنش بین دو پرتو نور پراکنده شده و نور فرودی در یک آشکار ساز می توان سرعت مایع را اندازه گیری بدون تماس انجام می شود. و نیز به خاطر تکفامی بالای نور لیزر برای برد وسیعی از سرعتها خیلی دقیق است.
یکی از سرعت سنجهای خاص لیزر اندازه گیری سرعت زاویه ای است. وسیله ای که برای این منظور طراحی شده است ژیروسکوپ لیزرینامیده می شود و شامل لیزری است که کاواک آن به شکل حلقه ای است که از سه آینه به جای دو آینه معمول استفاده می شود. این لیزر می تواند نوسان مربوط به انتشار نور را هم در جهت عقربه ساعت و هم در خلاف آن به دور حلقه تامین کند. فرکانسهای تشدیدی مربوط به هر دو جهت انتشار را می توان با استفاده از این شرط که طول تشدید کننده ( حلقه ای ) برابر مضرب صحیحی از طول موج باشد به دست آورد. اگر حلقه در حال چرخش باشد در مدت زمانی که لازم است نور یک دور کامل بزند زاویه آینه های تشدید کننده به اندازه یک مقدار خیلی کوچک ولی محدود حرکت خواهد کرد. طول موثر برای باریکه ای در همان جهت چرخش تشدید کننده می چرخد کمی بیشتر از باریکه ای است که در جهت عکس می چرخد. در نتیجه فرکانس های دو باریکه ای که در خلاف جهت یکدیگر می چرخند کمی تفاوت دارد و اختلاف این فرکانسهای متناسب با سرعت زاویه ای تشدید کننده است . با ایجاد تپش بین دو باریکه می توان سرعت زاویه ای را اندازه گیری کرد. ژیروسکوپ لیزری امکان اندازه گیری با دقتی را فراهم می کند که قابل مقایسه با دقت پیچیده ترین و گرانترین ژیروسکوپ های معمولی است.
کاربرد مصرفی دیگر و یا به عبارت بهتر کاربرد مصرفی واقعی عبارت از دیسک ویدئویی و دیسک صوتی است. یک دیسک ویدئو حامل یک برنامه ویدئویی ضبط شده است که می توان آن را بر روی دستگاه تلویزیون معمولی نمایش داد. سازندگان دیسک ویدئویی اطلاعات را با استفاده از یک سابنده روی آن ضبط می کنند که این اطلاعات به وسیله لیزر خوانده می شود. یک روش معمول ضبط شامل برشهای شیاری با طول ها و فاصله های مختلف است عمق این شیارها 4/1 طول موج لیزری است که از آن در فرایند خواندن استفاده می شود. در موقع خواندن باریکه لیزر طوری کانونی می شود که فقط بر روی یک شیار بیفتد. هنگامی که شیار در مسیر لکه باریکه لیزر واقغ شود بازتاب به خاطر تداخل ویرانگر بین نور بازتابیده از دیوارهای شیار و به آن کاهش پیدا می کند. به عکس نبودن شیار باعث یک بازتاب قوی می شود. بدین طریق می توان اطلاعات تلویزیونی را به صورت رقمی ضبط کرد.
کاربرد دیگر لیزرها نوشتن و خواندن اطلاعات در حافظه نوری در کامپیوترهاست لطف ای حافظه نوری هم در توان دسترسی به چگالی اطلاعات حدود مرتبه طول موج است. تکنیک ضبط عبارت است از ایجاد سوراخ های کوچکی در یک ماده مات یا نوعی تغییر خصوصیت عبور و بازتاب ماده زیر لایه که با استفاده از لیزرهای با توان کافی حاصل می شود. و حتی می تواند فیلم عکاسی باشد. اما هیچ یک از این زیر لایه ها را نمی توان پاک کرد. حلقه های قابل پاک کردن بر اساس گرما مغناطیسی فروالکتریک و فوتوکرومیک ساخته شده اند. همچنین حافظه های نوری با استفاده از تکنیک تمام نگاری نیز طراحی شده اند. نتیجتا اگر چه از لحاظ فنی امکان ساخت حافظه های نوری به وجود آمده است ولی ارزش اقتصادی آن ها هنوز جای بحث دارد.
آخرین کاربردی که در این بخش اشاره می کنیم گرافیک لیزری است. در این تکنیک ابتدا باریکه لیزر بوسیله یک سیستم مناسب روبشگر بر روی یک صفحه حساس به نور کانونی می شود و در حالی که شدت لیزر به طور همزمان با روبش از نظر دامنه مدوله می شود به طوری که بتوان آن را بوسیله کامپیوتر تولید کرد.( مانند سیستم های چاپ کامپیوتری بدون تماس ) و یا آنها را به صورت سیگنال الکتریکی از یک ایستگاه دور دریافت کرد( مانند پست تصویری). در مورد اخیر می توان سیگنال را به وسیله یک یک سیستم خواننده مناسب با کمک لیزر تولید کرد. وسیله خواندن در ایستگاه دور شامل لیزر با توان کم است که باریکه کانونی شده آن صفحه ای راکه باید خوانده شود می روبد. یک آشکارساز نوری باریکه پراکنده از نواحی تاریک و روشن روی صفحه را کنترل می کند و آن را به سیگنال الکتریکی تبدیل می کند. سیستم های لیزری رونوشت اکنون به طور وسیعی توسط بسیاری از ناشران روزنامه ها برای انتقال رونوشت صفحات روزنامه به کار برده می شود.
کاربردهای نظامی
کاربردهای نظامی لیزر همیشه عمده ترین کاربردهای آن بوده است . فعلا مهمتریم کاربردهای نظامی لیزر عبارت اند از: الف) فاصله یاب های لیزری ب) علامت گذارهای لیزری ج) سلاح های هدایت انرژی
فاصله یاب لیزری مبتنی بر همان اصولی است که در رادارهای معمولی از آن ها استفاده می شود. یک تپ کوتاه لیزری ( معمولا با زمان 10 تا 20 نانوثانیه) به سمت هدف نشانه گیری می شود و تپ پراکنده برگشتی بوسیله یک دریافت کننده مناسب نوری که شامل آشکارساز نوری است ثبت می شود. فاصله مورد نظر با اندازه گیری زمان پرواز این تپ لیزری به دست می اید. مزایای اصلی فاصله یاب لیزری را می توان به صورت زیر خلاصه کرد :
الف) وزن - قیمت و پیچیدگی آن به مراتب کمتر از رادارهای معمولی است.
ب) توانایی اندازه گیری فاصله حتی برای هنگامی که هدف در حال پرواز در ارتفاع بسیار کمی از سطح زمین و یا دریا باشد.
اشکال عمده این نوع رادار در این است که باریکه لیزر در شرایط نامناسب رویت به شدت در جو تضعیف می شود. فعلا چند نوع از فاصله یابهای لیزری با بردهای تا حدود 15 کیلومتر مورد استفاده اند :
الف) فاصله یاب های دستی برای استفاده سرباز پیاده ( یکی از آخرین مدل های آن در آمریکا ساخته شده که در جیب جا می گیرد و وزن آن با باتری حدود 500 گرم است.
ب) سیستم های فاصله یاب برای استفاده در تانکها
ج) سیستم های فاصله یاب مناسب برای دفاع ضد هوایی
اولین لیزرهای که در فاصله یابی از آن ها استفاده شد لیزرهای یاقوتی با سوئیچ Q بودند. امروزه فاصله یابهای لیزری اغلب بر اساس لیزرهای نئودمیم با سوئیچ Q طراحی شده اند. گرچه لیزرهای CO2 نوع TEA در بعضی موارد ( مثل فاصله یاب تانک ها ) جایگزین جالبی برای لیزرهای نئودمیم است.
دومین کاربرد نظامی لیزر در علامت گذاری است. اساس کار علامت گذاری لیزری خیلی ساده است : لیزری که در یک مکان سوق الجیشی قرار گرفته است هدف را روشن می سازد به خاطر روشنایی شدید نور هنگامی که هدف به وسیله یک صافی نوری با نوار باریک مشاهده شود به صورت یک نقطه روشن به نظر خواهد رسید. سلاح که ممکن است بمب - موشک - و یا اسلحه منفجر شونده دیگری باشد بوسیله یک سیستم احساسگر مناسب مجهز شده است. در ساده ترین شکل این احساسگر می تواند یک عدسی باشد که تصویر هدف را به یک آشکارساز نوری ربع دایره ای که سیستم فرمان حرکت سلاح را کنترل می کند انتقال می دهد و بنابراین می تواند آن را به سمت هدف هدایت کند. به این ترتیب هدف گیری با دقت بسیار زیاد امکان پذیر است. ( دقت هدف گیری حدود 1 متر از یک فاصله 10 کیلومتری ممکن به نظر می رسد.) معمولا لیزر از نوع Nd: YAG است. در حالی که لیزرهای CO2 به خاطر پیچیدگی آشکارسازهای نوری ( که مستلزم استفاده در دماهای سرمازایی است) نامناسب اند. علامت گذاری ممکن است از هواپیما - هلیکوپتر و یا از زمین انجام شود. ( مثلا با استفاده از یک علامت گذار دستی ). اکنون کوشش قابل ملاحظه ای هم در آمریکا و هم در روسیه برای ساخت لیزرهایی که به عنوان سلاحههای هدایت انرژی به کار می روند اختصاص یافته است. در مورد سیستم های قوی لیزری مورد نظر با توان احتمالا در حدود مگا وات ( حداقل برای چند ده ثانیه ) یک سیستم نوری باریکه لیزر را به هدف ( هواپیما - ماهواره یا موشک ) هدایت می کند تا خسارت غیر قابل جبرانی به وسایل احساسگر آن وارد کند و یا اینکه چنان آسیبی به سطح آن وارد کند که نهایتا در اثر تنش های پروازی دچار صدمه شود سیستم های لیزر مستقر در زمین به خاطر اثر معروف به شوفایی گرمایی که در جو اتفاق می افتد فعلا چندان عملی به نظر نمی رسند. جو زمین توسط باریکه لیزر گرم می شود و این باعث می شود که جو مانند یک عدسی منفی باریکه را واگرا سازد با قرار دادن لیزر در هواپیمای در حال پرواز در ارتفاع بالا و یا در یک سفینه فضایی می توان از این مساله اجتناب ورزید. اطالعات موجود در این زمینه ها به علت سری بودن آن ها اغلب ناقص و پراکنده اند. اما به نظر می رسد که این سیستم ها کلا شامل باریکه هایی پیوسته با توان 5 تا 10 مگا وات (برای چند ثانیه ) با یک وسیله هدایت اپتیکی به قطر 5 تا 10 متر باشند مناسب ترین لیزرها برای اینگونه کاربرد ها احتمالا لیزرهای شیمیایی اند ( DF یا HF) . لیزرهای شیمیایی به ویژه برای سیستم های مستقر در فضا جالب اند زیرا توسط آن ها می توان انرژی لازم را به صورت انرژی ذخیره فشرده به شکل انرژی شیمیایی ترکیب های مناسب تامین کرد.
تمام نگاری
تمام نگاری ( هولوگرافی http://www.holographer.org/ ) یک تکنیک انقلابی است که عکسبرداری سه بعدی (یعنی کامل ) از یک جسم و یا یک صحنه را ممکن می کند. این تکنیک در سال 1948 توسط گابور ابداع شد ( در آن زمان به منظور بهتر کرده توان تفکیک میکروسکوپ الکترونی پیشنهاد شد) و به صورت یک پیشنهاد عملی در آمدو اما قابلیت واقعی این تکنیک پس از اختراع لیزر نشان داده شد.
اساس تمام نگاری به این صورت است که باریکه لیزر بوسیله آینه که قسمتی از نور را عبور می دهد به دو باریکه ( بازتابیده و عبوری) تقسیم می شوند. باریکه بازتابیده مستقیما به صفحه حساس به نور برخورد می کند در حالی که باریکه عبوری جسمی را که باید تمام نگاری شود روشن می کند. به این ترتیب قسمتی از نوری که از جسم پراکنده شده هم روی صفحه حساس ( فیلم ) می افتد. به علت همدوس بودن باریکه ها یک نقش تداخلی از ترکیب دو باریکه روی صفحه تشکیل می شود حالا اگر این فیلم ظاهر شود و تحت بزرگنمایی کافی بررسی شود می توان این فریزهای تداخلی را مشاهده کرد. فاصله بین دو فریز تاریک متوالی معمولا حدود 1 میکرومتر است. این نقش تداخلی پیچیده است و هنگامی که صفحه را به وسیله چشم بررسی می کنیم به نظر نمی رسد که حامل تصویر مشابه با جسم اولیه باشد اما این فریزهای تداخلی در واقع حامل ضبط کاملی از جسم اولیه است.
حال فرض کنید که صفحه ظاهر شده را دوباره به محلی که در معرض نور قرار داشت بازگردانیم و جسم تحت مطالعه را برداربم باریکه بازتابیده اکنون با فریزهای روی صفحه برهمکنش می کنند و دوباره در پشت صفحه یک باریکه پراشیده ایجاد می کندبنابراین ناظری که به صفحه نگاه می کند جسم را در پشت صفحه می بیند طوری که انگار هنوز هم جسم در آنجاست.
یکی از جالبترین خصوصیات تمام نگاری این است که جسم بازسازی شده رفتار سه بعدی نشان می دهد بنابراین با حرکت دادن چشم از محل تماشا می توان طرف دیگر جسم را مشاهده کرد. توجه کنید که برای ضبط تمام نگار باید سه شرط اصلی را براورد: الف) درجه همدوسی نور لیزر باید به اندازه کافی باشد تا فریزهای تداخلی در روی صفحه تشکیل شود. ب) وضعیت نسبی جسم - صفحه و باریکه لیزر نباید در هنگام تاباندن نور به صفحه که حدود چند ثانیه طول می شکد تغییر کند در واقع تغییر محل نسبی باید کمتر از نصف طول موج لیزر باشد تا از درهم شدن نقش تداخلی جلوگیری کند. ج) قدرت تفکیک صفحه عکاسی باید به اندازه کافی زیاد باشد تا بتواند فریزهای تداخلی را ضبط کند.
تمام نگاری به عنوان یک تکنیک ضبط و بازسازی تصویر سه بعدی بیشترین موفقیت را تاکنون در کاربردهای هنری داشته است تا در کاربردهای علمی . اما بر اساس تمام نگاری از یک تکنیک تداخل سنجی تمام نگاشتی در کاربردهای علمی به عنوان وسیله ای برای ضبط و اندازه گیری واکنشها و ارتعاشات اجسام سه بعدی استفاده شده است.
منبع :www.physicsir.com
تمام نگاری یا هولوگرافی: Holography) روشی از تصویربرداری و تولید تصاویر سهبعدی است.)
محتویات
• ۱ چکیده
• ۲ ثبت تمامنگاشت
• ۳ ماهیت هالوگرام
• ۴ گذر و انعکاس
• ۵ ساختن هالوگرام
• ۶ شمایهٔ کلی هالوگرام
• ۷ میز هالوگرافی
• ۸ طرح تمامنگاشت
• ۹ بازسازی صحنه
• ۱۰ کاربردهای تمامنگاری
چکیده
تمامنگاری از نظر ثبت اطلاعات بر روی فیلم، به عکاسی شباهت دارد، اما شیوهها و وسایل کار برای ایجاد این تصویر کاملاً متفاوتند. در هالوگرام یا تمام نگاری اطلاعات مربوط به هر سه بُعد در تصویر ثبت شده است و ناظر از دیدن تمامنگاشت احساس برجستگی در تصویر میکند. حتی بیش از آنچه در برجستهبینی معمول است، بُعد در برجستهنمایی را به تعبیری میشود بعد کاذب نامید، چون فقط از یک زاویه (همان زاویهای که دوربینها موقع عکسبرداری مستقر بودهاند) میشود تصویر را مشاهده کرد، در حالی که در تمامنگاری، منظرهٔ بازسازی شده را از زوایای متعدد میتوان دید و ناظر با حرکت دادن سر خود، تأثیر ناشی از اختلاف منظر را حس خواهد کرد.
در سال ۱۹۴۷ دنیس گابور دانشمند انگلیسی تمامنگاری را پیشبینی کرد، ولی نتوانست آن را به طور عملی به نمایش درآورد. این کار به اجبار تا اوایل سالها ۱۹۶۰ یعنی زمان اختراع نوع خاصی از منبع نور لیزر به تعویق افتاد.
تهیه تمامنگاشت (هالوگرام) و ثبت تصویر روی فیلم عکاسی انجام میگیرد، اما برای درک تفاوت میان دو شیوه لازم است طبیعت نور بررسی شود.
نور مرئی شکلی از تابش الکترومغناطیسی است. فاصلهٔ دو قله در حرکت موجی را طول موج و تعداد نوسانها را در هر ثانیه فرکانس یا بسامد حرکت موج مینامند. حاصلضرب بسامد در طول موج نیز سرعت انتشار خوانده میشود و چون سرعت انتشار نور ثابت است، در بسامد بالا طول موجها کوتاهتراند. منابع نوری که در عکاسی متعارف از آنها استفاده میشود نور خورشید یا روشنایی حاصل از چراغهای برق است. فرکانس این نوع منابع نور بسیار گستردهاست و نورهای فرابنفش تا فروسرخ را در بر میگیرد. به دلیل ماهیت نامنظم نور سفید از این نوع نور نمیتوان برای ثبت اطلاعات مربوط به عمق منظره در هالوگرام استفاده کرد.
برای ثبت اطلاعات مربوط به عمق منظره منبع نور مورد استفاده باید از نوع تک فرکانسی باشد، یعنی تکرنگ باشد. بعلاوه هر موج با موجهای دیگر هم فاز یا همدوس باشد. نور لیزر چنین خاصیتی دارد.
ثبت تمامنگاشت
چون تابش لیزر منظم یعنی تکرنگ و همدوس است. جزئیات صحنهای که چنین نوری بر آن میتابد، با دقت تمام روی فیلم عکاسی منتقل میشود. موجی که از بخشهای دورتر صحنه به فیلم میتابد نسبت به موج مربوط به بخشهای نزدیکتر صحنه تأخیر خواهد داشت. همین امر روی فیلم ثبت میشود. برای ثبت یک باریکه مبنا (reference beam) مورد نیاز خواهد بود تا روابط فازی باریکه ما با هم مقایسه شوند. این کار با تقسیم کردن پرتو لیزر به دو بخش به دست میآید. بخشی از باریکه به سمت صفحه مورد نظر هدف گیری میشود و باریکه منعکس شده از صفحه با بخش دیگری از باریکه که مستقیماً به فیلم عکاسی میتابد، مقایسه میشود. پرتوهای تابشی در محلی که به هم میرسند با هم تداخل خواهند کرد.
هنگامی که شکمهای دو موج برهم منطبق میشوند. شدت با دامنه انرژی موج افزایش مییابد. این حالت را تداخل مینامند. وقتی شکم یک موج بر حداقل وضعیت موج دوم تطبیق میکند. چگالی کاهش مییابد. تداخل سازنده وقتی رخ میدهد که هر دو موج به طور هم فاز نسبت به هم به یک نقطه برسند. تداخل ویرانگر هنگامی اتّفاق میافتد که فیزیک امواج غیر فاز باشند. هر چند هر دو این فیزیک امواج که با یکدیگر برخورد میکنند با گذشت زمان تغییر میکنند. اما دامنههای به دست آمده در صفحه تمامنگاری با زمان تغییر نمیکنند این مسئله به این معناست که الگوی امواج ساکن به وجود میآید. و همین فیزیک امواج ساکن هستند که در فیلم عکاسی ثبت میشوند. علاوه بر این الگوی ثبت شده شامل اطلاعات دامنه و فاز باریکه تابشی است. در یک عکس متعارف فقط دامنههای نوری که به فیلم میرسند ثبت میشود.
ماهیت هالوگرام
اگر بخواهید یک هالوگرامرا ببینید، هالوگرام، نیازی نیست از کیف پولتان جای دورتری بروید! هالوگرامها در تمام کارتهای اعتباری، راهنمایی رانندگی و کارتهای شناسایی میبینید. اگر آنقدرها هم پیر نباشید که گواهینامهٔ شما از اعتبار ساقط شده باشد، همچنان هالوگرام را در خانهٔ خود دارید! هالوگرامها را بر روی جعبههای سیدی، دی وی دیو کالاهای استاندارد میبینید. متأسفانه این نوع هالوگرامها چندان گیرا نیستند (ولی برای جلوگیری از ورود اجناس تقلبی یا شناخت آنها در بازار فروش بسیار ابزار مؤثری است). اگر آنها را کمی در راستای دید حرکت دهید رنگ و شکلی که در یک راستا میدیدید با جهت دیگر فرق میکند، ولی این تغییرات در حد زیادی نیستند. هالوگرام جدای از اینکه در بازار بر روی کالاها دیده میشوند، به صورت پوستر یا تصاویر قهرمانهای فیلمها یا کتابهای کودکان و نوجوانان هم هستند. مثل همین موجود فضایی سبز رنگ سه بُعدی! از طرف دیگر هالوگرامهایی هم در ابعاد بزرگ تولید میشوند که با لیزرها و یا در اتاق تاریک با یک نور فقط به آنها میتابد. این نوع بسیار جالب هستند! سطوح دو بُعدی دارند که تصویر واقعی سه بعدی را دقیقاً به نمایش میگذارد. حتی نیازی نیست برای دیدن آنها از عینکهای خاص یا عدسیهای ویژهٔ تصاویر سه بُعدی برای دیدن سه بُعد استفاده کنید. اگر از زوایای مختلف به تصاویر در هالوگرام نگاه کنید، آنها را در عمقهای متفاوتی خواهید دید؛ درست مثل اینکه به اجرام واقعی نگاه میکنید. برخی هالوگرامها حتی وقتی شما فاصله خود را با آنها تغییر میدهید، به نظر حرکت میکنند؛ این بستگی به چگونگی نگاه شما دارد. اگر هالوگرام را نصف کنیم. و این کار را حتی چند بار تکرار کنیم، همچنان تصویر اصلی قبلی را در اندازهای کوچکتر خواهیم دید. هلوگرامها ویژگیهای جالب دیگری هم دارند. اگر یکی از آنها را نصف کنید، هر نیمه شامل کُل تصویر هالوگرام است!! حتی اگر یک بخش کوچکی از آن را جدا کنید، هم همین اتفاق خواهد افتاد. (حتی بخش کوچکی از آن هم کُل تصویر را در خود دارد). جالبتر اینکه اگر هالوگرامی از شیشهٔ ذرهبینی شکل درست کنید، همهٔ تصاویر در هالوگرام درست مانند خود جسم بزرگ دیده میشوند. زمانی اصول هالوگرام را میدانید که بفهمید چگونه و به چه سادگی میتوان هالوگرام را ساخت! همهٔ این اصول مستقیماً به فرایند تولید و استفادهٔ آن مربوط میشود. ببینیم این فرایند چگونهاست.
گذر و انعکاس
دو دسته هالوگرام داریم- گذری و بازتابی. هالوگرامهای گذری وقتی نور تک رنگ (فقط با یک طول موج) به آنها برخورد میکند، تصویر ۳ بُعدی تولید میکنند. هالوگرامهای بازتابی وقتی لیزر یا نور سفید از سطح آنها منعکس میشود، این تصویر سه بُعدی را تولید میکنند.
ساختن هالوگرام
برای ساختن هالوگرام نیازی به ابزار زیاد نیست. براحتی میتوانید یکی برای خودتان با ابزار زیر بسازید: لیزر: لیزرهای واقعی معمولاً هلیم-نئون (HeNe) در هالوگرافی زیاد به کار میروند. بسیاری در منزل از لیزرهای به اصطلاح نشانگر (pointer) استفاده میکنند، ولی نور حاصل از آنها کمتر همدوس وپایا باقی میماند؛ در نتیجه تصویر به ندرت خوب از آب در میآید. برخی از انواع لیزر هستند که از لیزرهایی با رنگهای مختلف استفاده میکنند. بسته به نوع لیزری که استفاده میکنید نیاز به شاتر یا نوردهی معینی دارید (این اصطلاح در عکاسی و دوربینها رایج است. یعنی زمان نوردهی هر تصویری که میخواهید بگیرید). عدسیها: اغلب مردم تصور میکنند که هالوگرافی عکاسی بدون لنز است. در حالی که اینجا هم به لنز نیاز هست. با این تفاوت که در دوربینها عدسی یا لنز نور را کانونی میکند ولی در هالوگرافی لنزها باعث میشوند نور رسیده پخش شود. نوفه یا باریکهٔ جداکننده: این ابزاری است که آینهها و منشورهایی دارد تا یک نوفه یا باریکهٔ نور را به دو باریکه تبدیل میکند. آینهها: این باریکههای مستقیم نور برای تصحیح مکان به کار میروند. با استفاده از عدسیها و باریکهٔ جداکننده، آینهها باید کاملاً تمیز باشند. غبار یا کثیف بودن آنها روی تصویر نهایی تأثیر منفی دارد. فیلم هالوگرافی: فیلم هالوگرافی میتواند نور را با کیفیت بالا ثبت کند (ثبت نور برای ساختن هالوگرام ضروری است). ثبت کننده نور در واقع لایهای است که به نور حساس بوده و بر روی سطح شفافی مانند فیلم یا شیشه عکاسی قرار میگیرد. تفاوت بین فیلم هالوگرافی و عکاسی این است که فیلم هالوگرافی باید قادر باشد تا تغییرات خیلی کوچک را که در فاصلههای میکروسکپی اتفاق میافتد، ثبت کند. به عبارت دیگر باید دانه بندی خیلی خوبی داشته باشد. در برخی حالتها هالوگرامهایی که لیزر قرمز استفاده میکنند، براساس امولسیونی هستند که به نور قرمز بسیار حساس هستند.
شمایهٔ کلی هالوگرام
هالوگرام تفاوتهای زیادی بین این دو ابزار وجود دارد، از جمله: ۱. لیزر باریکهٔ نور را نشانه میرود که باریکهٔ نور را به دو بخش تقسیم میکند. ۲. آینهها مسیر این دو باریکه را مستقیم میکند، بهطوریکه به هدفهای ثابتی برخورد میکند. ۳. هر کدام از دو باریکه از عدسیهای میگذرد، و نوار گستردهای نور میشود. ۴. یک باریکه، باریکهٔ جسم، از خود جسم منعکس شده و به امولسیون عکاسی میرسد. ۵. باریکهٔ دیگر، باریکهٔ بازگشتی، بدون انعکاس ار هیچ آینهای به امولسیون برخورد میکند. برای گرفتن عکس مطلوب باید فضای مناسبی هم داشته باشید. برخی از روشها فراتر از ابزار در دسترس شما هستند. اتاق تاریکتر بهتر است. گزینهٔ مناسب برای اضافه کردن نور کمی به اتاق بدون اثر گذاشتن روی نتیجهٔ نهایی عکس هالوگرام نور غیرمضری به حساب میآید؛ مانند عکاسی معمولی که نیاز به اتاق تاریک برای ظهور عکسها دارد. در اتاق تاریک نور مناسب معمولاً قرمز است و در هالوگرافی هم از این نور استفاده میشود. هرچند در هالوگرافی نورهای سبز و آبی - سبز هم استفاده میشود.
میز هالوگرافی
در هالوگرافی نیاز به میزی با پایههای بسیار ثابت و بدون حرکت دارید. آزمایشگاههای هالوگرافی و استودیوهای حرفهای اغلب از میزهایی استفاده میکنند که شکل لانه زنبور بوده و لایههای دارند که روی پایههای لاستیکی بادی قرار گرفتهاست. این پایهها یا تیوبها زیر بخش بالایی سطح میز قرار دارند، و ارتعاشها را خنثی میکنند. شما هم میتوانید هالوگرام را با قرار دادن تیوپها در بخش زیرین میز یا زیر شیشهٔ آن درست کنید. بعد از قرار دادن تیوپها باید یک جعبه شن پُر از لایهٔ ضخیمی از شن را بالای آن قرار دهید. شن و تیوپها نقش همان میزهای حرفهای لانه زنبوری را دارند. اگر فضای کافی برای چنین میز بزرگی ندارید، میتوانید با قرار دادن بطریهای شن یا شکر برای نگهداشتن هرکدام از بخشهای ابزار استفاده کنید؛ ولی برای طرحهایی با اندازههای بزرگتر از این روش نمیتوانید استفاده کنید. برای وضوح بهتر هالوگرامها، باید حتی المکان از هرگونه ارتعاش حتی در هوا جلوگیری کرد. حرارت و جریان هوای کولرها یا سیستمهای تهویهٔ هوا، هوا را کاملاً جابهجا میکنند و در نتیجه میتوانند دمای بدن یا خود شما را کمی حرکت دهند. به این دلیل باید این نوع سیستمهای تهویهٔ هوا را خاموش کنید و چند دقیقهای را هم منتظر باشید تا هوا ساکن شده و تأثیری روی هالوگرام و ابزار نداشته باشد. این مراقبتهای اولیه شبیه زمانی است که میخواهید با دوربینی که در دست دارید عکس بگیرید. وقت میخواهید شاتر را بزنید اگر بر اثر تنفس یا حرکت دست یا باد کمی دوربین حرکت داشته باشد، عکس کدر و در حال ارتعاش افتاده و عکس خراب میشود. در هالوگرام باید بیشتر مراقب این نوع شرایط باشید زیرا با تصویری سرو کار دارید که میکروسکپی است.
طرح تمامنگاشت
فیلم تمامنگاری ظاهر شده یا تمامنگاشت، شباهتی به منظره اصلی یا موضوع اصلی ندارد. هرگاه موضوع مورد عکاسی، صفحهای صاف و منعکس کننده نور باشد، تصویر روی فیلم مجموعهای از رشتههای روشن و تاریک خواهد بود. حال آنکه تصویر یک نقطه به صورت تعدادی دایره هم مرکز خواهد بود و در واقع تمامنگاشت یک منظره به شکل دوایر تیره و روشن است که با پیچیدگی خاصی بر روی هم قرار گرفتهاند.
بازسازی صحنه
ثبت تصاویر تمامنگاری شیوههای گوناگون دارد اما معمولاً تمامنگار به صورت شفافه (فیلمی مانند اسلاید) ثبت میشود برای ایجاد و بازسازی منظره اصلی باید پرتو نور همدوس مطابق باریکه مبنا که در ثبت تصویر مورد استفاده قرار گرفتهاست بر شفافه تاباند. هرگاه در پشت همین شفافه قرار بگیریم تصویرهای صحنه یا منظره را دوباره خواهیم دید. در واقع پرتو لیزری که تصویر را بازسازی میکند، باید عیناً مانند پرتو اولیه نباشد. این پرتو به محض عبور از داخل شفافه تمامنگاشت از نظر دامنه و فاز تغییر میکند. و به این ترتیب تصویر مجازی از جسم ایجاد میکند که فقط ناظری که پشت تمامنگاشت قرار دارد، آن را میبیند.
علاوه بر آن یک تصویر حقیقی نیز در سمتی که ناظر قرار دارد، ظاهر میشود. این تصویر را با چشم نمیتوان دید و برای مشاهده آن باید پردهای را در باریکه کانونی قرار دارد، تا تصویر بر روی آن تشکیل شود. چون رنگ به فرکانس نور بستگی دارد. بنابراین تمامنگاری که با استفاده از یک باریکه لیزر به وجود میآید تکرنگ خواهد بود. البته با استفاده از سه باریکه لیزر که بسامد آنها مطابق با بسامد نور (رنگهای اصلی قرمز، سبز و آبی باشد میتواند تصویری تمام رنگی ایجاد کرد.
کاربردهای تمامنگاری
• با توجه به ویژگیهای پرشمار تمامنگارها از آنها در صنعت و مهندسی بسیار سود میبرند. یکی از این ویژگیها این است که میتوان چندین تمامنگاشت را روی یک فیلم ثبت کرد. زاویه باریکه مبنا نسبت به سطح فیلم در عکسبرداریهای گوناگون متفاوت است. از این رو الگوهای تداخلی و ایجاد تصویر هنگامی امکان دارد که فیلم را پس از ثبت و ظهور در برابر تابش پرتو باز سازنده قرار دهیم. این پرتو دقیقااز همان زاویهای بر فیلم میتابد که باریکه مبنا تابیدهاست. بر همین اساس میتوان با تغییر دادن زاویه تابش نور تصاویر گوناگونی را بر روی یک فیلم ثبت کرد. و ناظر میتواند با چرخاندن فیلم در برابر باریکه ثابت نور، کلیه تصاویر ثبت شده را یک به یک ببیند. بدین ترتیب از تمامنگاری در تمام زمینههایی که به ذخیره و نگهداری اطلاعات مربوط میشود میتوان استفاده کرد.
• کاربرد دیگر تمامنگاری در بررسی اندازه اشیایی است که از روی آن مدل دیگری ساختهاند. در واقع اصل شیئ و نسخه بدل را طوری در معرض تابش شعاعهای لیزر قرار میدهند که تمامنگاشت ایجاد میکند. هرگاه اندازه اصل و بدل با یکدیگر متفاوت باشند، الگوهای تداخلی به وجود میآورند. از روی همین الگوها اختلافها را متوجه میشوند. در این شیوه اختلافی به اندازه ۰٫۰۰۰۳ میلیمتر قابل مشاهده و بررسی است. تمامنگار از اختراعات نسبتاً جدید است و موارد استفاده از آن در حال افزایش است.
مطلب از دانشنامهٔ رشد از کاربردهای تمام نگاری CDهای تمام نگاری است: تمام نگاری یعنی ایجاد یک تصویر کامل و سه بعدی از یک شی سه بعدی. این کار بهوسیله پرتوهای لیزر انجام میشود. پرتوهای لیزر همدوس را به سمت هدف نشان میگیرند و در سر راه موانعی قرار میدهند. پرتوها پس از برخورد با مانع و منحرف شدن، جایی با هم تداخل میکنند. با قرار دادن مناسب منبع لیزر و مانع، میتوان کاری کرد که محل تداخل پرتوها کاملاً مشخص شود و در این محل تصویری از مانع بوجود میآید که شامل همه زوایای آن هم هست. اخیراً یک شرکت ژاپنی با نام اپتور (Optware) موفق به استفاده از این فناوری در تولید سی دیها و دی وی دیهای ذخیره اطلاعات شدهاست. این شرکت پیشرو در تکنیکهای تمام نگاری است و توانسته با استفاده از تمام نگاری دیسکهایی تولید کند که قادر به ذخیره یک ترابایت اطلاعات هستند و سرعت انتقال اطلاعات حدود یک گیگابایت در ثانیهاست. کاری که دانشمندان شرکت اپتور انجام دادهاند، قرار یک لایه بسیار نازک آینهای در جلوی لایه اطلاعات است. نقش این لایه جلوگیری از پخش شدن پرتوها پس از بازتاب و محلی برای ایجاد تصویر تمام نگاری از اطلاعات است. همچنین برای ذخیره اطلاعات بر روی این دیسکها، از صفحات اطلاعات (DATA Pages) استفاده میشود که دوبعدی و بصورت فایلهای Bitmap هستند و پس از قرار گرفتن بر روی هم نقشهای را در اختیار دستگاه میگذارند که بر اساس آن تصویر تمام نگاری اطلاعات ایجاد میشود. پس از ایجاد نقشه سه بعدی، یک پرتو که شامل دو نوع لیزر مرجع و سیگنال است به سمت آن شلیک میشود و با برخورد با پستی بلندیهای اطلاعات براساس نقشه سه بعدی، اطلاعات را بصورت تمام نگاری ذخیره میکند. این روش کاملاً عملی علاوه بر افزایش سرعت انتقال و میزان ذخیره اطلاعات، امتیاز دیگر هم دارد که تغییر نکردن ابعاد دیسکها است. دیسکهای تمام نگاری، ابعادی در حدود DVD معمولی دارند و از همه مهمتر عمل ضبط اطلاعات و خواندن آن توسط دستگاههای تمام نگاری، بسیار کم هزینهاست و طبق پیش بینی شرکت اپتور، استفاده از این دیسکها به زودی در میان کاربرها رایج خواهد بود. قطر این دیسکها حدود ۱۲ سانتیمتر است که تفاوت چندان با قطر دی وی دیها ندارد. اگر با دقت به سطح پشتی یکی از این دیسکهای تمام نگاری نگاه کنید، میتوانید ردیفهای اطلاعات ضبط شده بصورت سه بعدی را در آن ببینید.
منابع :
دانشنامه ویکی پدیا
1. "Quantum gas temperature drops below absolute zero". Wired. 4 January 2013. Retrieved 5 February 2013.
2. "Quantum gas goes below absolute zero". Nature. 3 January 2013. Retrieved 5 February 2013.
3. "Rheinmetall demos laser that can shoot down drones". BBC. 8 January 2013. Retrieved 5 February 2013.
4. "Rheinmetall's 50kW laser proves worth". UPI. 2 January 2013. Retrieved 5 February 2013.
• «آشنایی با اپتیک»، فرانک ال. پدروتی، لئون اس. پدروتی. ترجمه:محی الدین شیخ الاسلامی
• «مرگ مخترع، تولد تاریخ»، هممیهن، ۲۶ اردیبهشت ۱۳۸۶. شمارهٔ ۶۸
• «کاربرد لیزر»، مولف: محمد طاها ترکمان، فروردین1391
اگر قبلا در بیان ثبت نام کرده اید لطفا ابتدا وارد شوید، در غیر این صورت می توانید ثبت نام کنید.